ENTRIES TAGGED "nosql"

NoSQL Choices: To Misfit or Cargo Cult?

Retreading old topics can be a powerful source of epiphany, sometimes more so than simple extra-box thinking. I was a computer science student, of course I knew statistics. But my recent years as a NoSQL (or better stated: distributed systems) junkie have irreparably colored my worldview, filtering every metaphor with a tinge of information management.

Lounging on a half-world plane ride has its benefits, namely, the opportunity to read. Most of my Delta flight from Tel Aviv back home to Portland lacked both wifi and (in my case) a workable laptop power source. So instead, I devoured Nate Silver’s book, The Signal and the Noise. When Nate reintroduced me to the concept of statistical overfit, and relatedly underfit, I could not help but consider these cases in light of the modern problem of distributed data management, namely, operators (you may call these operators DBAs, but please, not to their faces).

When collecting information, be it for a psychological profile of chimp mating rituals, or plotting datapoints in search of the Higgs Boson, the ultimate goal is to find some sort of usable signal, some trend in the data. Not every point is useful, and in fact, any individual could be downright abnormal. This is why we need several points to spot a trend. The world rarely gives us anything clearer than a jumble of anecdotes. But plotted together, occasionally a pattern emerges. This pattern, if repeatable and useful for prediction, becomes a working theory. This is science, and is generally considered a good method for making decisions.

On the other hand, when lacking experience, we tend to over value the experience of others when we assume they have more. This works in straightforward cases, like learning to cook a burger (watch someone make one, copy their process). This isn’t so useful as similarities diverge. Watching someone make a cake won’t tell you much about the process of crafting a burger. Folks like to call this cargo cult behavior.

How Fit are You, Bro?

You need to extract useful information from experience (which I’ll use the math-y sounding word datapoints). Having a collection of datapoints to choose from is useful, but that’s only one part of the process of decision-making. I’m not speaking of a necessarily formal process here, but in the case of database operators, merely a collection of experience. Reality tends to be fairly biased toward facts (despite the desire of many people for this to not be the case). Given enough experience, especially if that experience is factual, we tend to make better and better decisions more inline with reality. That’s pretty much the essence of prediction. Our mushy human brains are more-or-less good at that, at least, better than other animals. It’s why we have computers and Everybody Loves Raymond, and my cat pees in a box.

Imagine you have a sufficient amount of relevant datapoints that you can plot on a chart. Assuming the axes have any relation to each other, and the data is sound, a trend may emerge, such as a line, or some other bounding shape. A signal is relevant data that corresponds to the rules we discover by best fit. Noise is everything else. It’s somewhat circular sounding logic, and it’s really hard to know what is really a signal. This is why science is hard, and so is choosing a proper database. We’re always checking our assumptions, and one solid counter signal can really be disastrous for a model. We may have been wrong all along, missing only enough data. As Einstein famously said in response to the book 100 Authors Against Einstein: “If I were wrong, then one would have been enough!”

Database operators (and programmers forced to play this role) must make predictions all the time, against a seemingly endless series of questions. How much data can I handle? What kind of latency can I expect? How many servers will I need, and how much work to manage them?

So, like all decision making processes, we refer to experience. The problem is, as our industry demands increasing scale, very few people actually have much experience managing giant scale systems. We tend to draw our assumptions from our limited, or biased smaller scale experience, and extrapolate outward. The theories we then tend to concoct are not the optimal fit that we desire, but instead tend to be overfit.

Overfit is when we have a limited amount of data, and overstate its general implications. If we imagine a plot of likely failure scenarios against a limited number of servers, we may be tempted to believe our biggest odds of failure are insufficient RAM, or disk failure. After all, my network has never given me problems, but I sure have lost a hard drive or two. We take these assumptions, which are only somewhat relevant to the realities of scalable systems and divine some rules for ourselves that entirely miss the point.

overfitting

fitting

In a real distributed system, network issues tend to consume most of our interest. Single-server consistency is a solved problem, and most (worthwhile) distributed databases have some sense of built in redundancy (usually replication, the root of all distributed evil).
Read more…

Comment |

Why Choose a Graph Database

Collaborative filtering with Neo4j

By this time, chances are very likely that you’ve heard of NoSQL, and of graph databases like Neo4j.

NoSQL databases address important challenges that we face today, in terms of data size and data complexity. They offer a valuable solution by providing particular data models to address these dimensions.

On one side of the spectrum, these databases resolve issues for scaling out and high data values using compounded aggregate values, on the other side is a relationship based data model that allows us to model real world information containing high fidelity and complexity.

Neo4j, like many other graph databases, builds upon the property graph model; labeled nodes (for informational entities) are connected via directed, typed relationships. Both nodes and relationships hold arbitrary properties (key-value pairs). There is no rigid schema, but with node-labels and relationship-types we can have as much meta-information as we like. When importing data into a graph database, the relationships are treated with as much value as the database records themselves. This allows the engine to navigate your connections between nodes in constant time. That compares favorably to the exponential slowdown of many-JOIN SQL-queries in a relational database.

property-graph

How can you use a graph database?

Graph databases are well suited to model rich domains. Both object models and ER-diagrams are already graphs and provide a hint at the whiteboard-friendliness of the data model and the low-friction mapping of objects into graphs.

Instead of de-normalizing for performance, you would normalize interesting attributes into their own nodes, making it much easier to move, filter and aggregate along these lines. Content and asset management, job-finding, recommendations based on weighted relationships to relevant attribute-nodes are some use cases that fit this model very well.

Many people use graph databases because of their high performance online query capabilities. They process large amounts or high volumes of raw data with Map/Reduce in Hadoop or Event-Processing (like Storm, Esper, etc.) and project the computation results into a graph. We’ve seen examples of this from many domains from financial (fraud detection in money flow graphs), biotech (protein analysis on genome sequencing data) to telco (mobile network optimizations on signal-strength-measurements).

Graph databases shine when you can express your queries as a local search using a few starting points (e.g., people, products, places, orders). From there, you can follow relevant relationships to accumulate interesting information, or project visited nodes and relationships into a suitable result.

Read more…

Comment: 1 |

Augmenting Unstructured Data

OSCON 2013 Speaker Series

Our world is filled with unstructured data. By some estimates, it’s as high as 80% of all data.

Unstructured data is data that isn’t in a specific format. It isn’t separated by a delimiter that you could split on and get all of the individual pieces of data. Most often, this data comes directly from humans. Human generated data isn’t the best kind to place in a relational database and run queries on. You’d need to run some algorithms on unstructured data to gain any insight.

Play-by-Play

Advanced NFL Stats was kind enough to open up their play-by-play data for NFL games from 2002 to 2012. This dataset consisted of both structured and unstructured data. Here is a sample line showing a single play in the dataset:

This line is comma separated and has various queryable elements. For example, we could query on the teams playing and the scores. We couldn’t query on the unstructured portion, specifically:

There are many more insights that can be gleaned from this portion. For example, we can see that San Francisco’s quarterback, Colin Kaepernick, passed the ball to the wide receiver, Michael Crabtree. He was tackled by Charles Tillman. Michael Crabtree caught the ball at the 25 yard line, gained 1 yard. After catching the ball, he didn’t make any forward progress or yards after catch (“0-yds YAC“).

Writing a synopsis like that is easy for me as a human. I’ve spent my life working with language and trying to comprehend the meaning. It’s not as easy for a computer. We have to use various methods to extract the information from unstructured data like this. These can vary dramatically in complexity; some use simple string lookups or contains and others use natural language processing.

Parsing would be easy if all of the plays looked like the one above, but they don’t. Each play has a little bit different formatting and varies in the amount of data. The general format is different for each type of play: run, pass, punt, etc. Each type of play needs to be treated a little differently. Also, each person writing the play description will be a little different from the others.

Augmenting Data

As I showed in the synopsis of the play, one can get some interesting insight out of the structured and unstructured data. However, we’re still limited in what we can do and the kinds of queries we can write.

I had a conversation with a Canadian about American Football and the effects of the weather. I was talking about how the NFL now favors domed locations to take weather out as a variable for the Superbowl or NFL championship. With the play-by-play dataset, I couldn’t write a query to tell me the effects of weather one way or another. The data simply doesn’t exist in the dataset.

The physical location and date of the game is captured in the play-by-play. We can see that in the first portion “20121119_CHI@SF“. Here, Chicago is playing at San Francisco on 2012-11-19. There are other datasets that could enable us to augment our play-by-play. These datasets would give us the physical location of the stadium where the game was played (the team’s name doesn’t mean that their stadium is in that city). The dataset for stadiums is a relatively small one. This dataset also shows if the stadium is domed and the ambient temperature is a non-issue.
Read more…

Comment |

MySQL in 2012: Report from Percona Live

Checking in on the state of MySQL.

Contrasting deployments at craigslit and Pinterest, trends, commercial offerings, and more

Comments: 3 |
Developer Week in Review: Talking to your phone

Developer Week in Review: Talking to your phone

Getting serious about Siri, Open Office on the rocks, and Google embraces SQL.

This week, we ask if Apple's Siri has more than novelty value, and decide it does. Open Office needs you (or at least your money) to stay afloat, and Google bends to developer pressure and finally adds SQL support to its cloud computing platform.

Comments: 4 |
What CouchDB can do for HTML5, web apps and mobile

What CouchDB can do for HTML5, web apps and mobile

The utility of CouchApps and how CouchDB could shape mobile.

OSCON speaker Bradley Holt talks about what CouchDB offers web developers, how the database works with HTML5, and why CouchApps could catch on.

Comments Off |

Brian Aker on post-Oracle MySQL

A deep look at Oracle's motivations and MySQL's future

In time for next week’s MySQL Conference & Expo, Brian Aker discussed a number of topics with us, including Oracle’s motivations for buying Sun and the rise of NoSQL.

Comment: 1 |